11 research outputs found

    Clustering Optimisation Techniques in Mobile Networks

    Get PDF
    The use of mobile phones has exploded over the past years, abundantly through the introduction of smartphones and the rapidly expanding use of mobile data. This has resulted in a spiraling problem of ensuring quality of service for users of mobile networks. Hence, mobile carriers and service providers need to determine how to prioritise expansion decisions and optimise network faults to ensure customer satisfaction and optimal network performance. To assist in that decision-making process, this research employs data mining classification of different Key Performance Indicator datasets to develop a monitoring scheme for mobile networks as a means of identifying the causes of network malfunctions. Then, the data are clustered to observe the characteristics of the technical areas with the use of k-means clustering. The data output is further trained with decision tree classification algorithms. The end result was that this method of network optimisation allowed for significantly improved fault detection performance

    Clustering Optimisation Techniques in Mobile Networks

    Get PDF
    The use of mobile phones has exploded over the past years, abundantly through the introduction of smartphones and the rapidly expanding use of mobile data. This has resulted in a spiraling problem of ensuring quality of service for users of mobile networks. Hence, mobile carriers and service providers need to determine how to prioritise expansion decisions and optimise network faults to ensure customer satisfaction and optimal network performance. To assist in that decision-making process, this research employs data mining classification of different Key Performance Indicator datasets to develop a monitoring scheme for mobile networks as a means of identifying the causes of network malfunctions. Then, the data are clustered to observe the characteristics of the technical areas with the use of k-means clustering. The data output is further trained with decision tree classification algorithms. The end result was that this method of network optimisation allowed for significantly improved fault detection performance

    Clustering Optimisation Techniques in Mobile Networks

    Get PDF
    The use of mobile phones has exploded over the past years, abundantly through the introduction of smartphones and the rapidly expanding use of mobile data. This has resulted in a spiraling problem of ensuring quality of service for users of mobile networks. Hence, mobile carriers and service providers need to determine how to prioritise expansion decisions and optimise network faults to ensure customer satisfaction and optimal network performance. To assist in that decision-making process, this research employs data mining classification of different Key Performance Indicator datasets to develop a monitoring scheme for mobile networks as a means of identifying the causes of network malfunctions. Then, the data are clustered to observe the characteristics of the technical areas with the use of k-means clustering. The data output is further trained with decision tree classification algorithms. The end result was that this method of network optimisation allowed for significantly improved fault detection performance

    Financial predictions using cost sensitive neural networks for multi-class learning

    Get PDF
    The interest in the localisation of wireless sensor networks has grown in recent years. A variety of machine-learning methods have been proposed in recent years to improve the optimisation of the complex behaviour of wireless networks. Network administrators have found that traditional classification algorithms may be limited with imbalanced datasets. In fact, the problem of imbalanced data learning has received particular interest. The purpose of this study was to examine design modifications to neural networks in order to address the problem of cost optimisation decisions and financial predictions. The goal was to compare four learning-based techniques using cost-sensitive neural network ensemble for multiclass imbalance data learning. The problem is formulated as a combinatorial cost optimisation in terms of minimising the cost using meta-learning classification rules for Naïve Bayes, J48, Multilayer Perceptions, and Radial Basis Function models. With these models, optimisation faults and cost evaluations for network training are considered

    Clustering Optimisation Techniques in Mobile Networks

    Get PDF
    The use of mobile phones has exploded over the past years, abundantly through the introduction of smartphones and the rapidly expanding use of mobile data. This has resulted in a spiraling problem of ensuring quality of service for users of mobile networks. Hence, mobile carriers and service providers need to determine how to prioritise expansion decisions and optimise network faults to ensure customer satisfaction and optimal network performance. To assist in that decision-making process, this research employs data mining classification of different Key Performance Indicator datasets to develop a monitoring scheme for mobile networks as a means of identifying the causes of network malfunctions. Then, the data are clustered to observe the characteristics of the technical areas with the use of k-means clustering. The data output is further trained with decision tree classification algorithms. The end result was that this method of network optimisation allowed for significantly improved fault detection performance

    Clustering Optimisation Techniques in Mobile Networks

    Get PDF
    The use of mobile phones has exploded over the past years,abundantly through the introduction of smartphones and the rapidly expanding use of mobile data. This has resulted in a spiraling problem of ensuring quality of service for users of mobile networks. Hence, mobile carriers and service providers need to determine how to prioritise expansion decisions and optimise network faults to ensure customer satisfaction and optimal network performance. To assist in that decision-making process, this research employs data mining classification of different Key Performance Indicator datasets to develop a monitoring scheme for mobile networks as a means of identifying the causes of network malfunctions. Then, the data are clustered to observe the characteristics of the technical areas with the use of k-means clustering. The data output is further trained with decision tree classification algorithms. The end result was that this method of network optimisation allowed for significantly improved fault detection performanceComment: 8 pages, 4 figure

    Design and implementation for automated network troubleshooting using data mining

    Get PDF
    The efficient and effective monitoring of mobile networks is vital given the number of users who rely on such networks and the importance of those networks. The purpose of this paper is to present a monitoring scheme for mobile networks based on the use of rules and decision tree data mining classifiers to upgrade fault detection and handling. The goal is to have optimisation rules that improve anomaly detection. In addition, a monitoring scheme that relies on Bayesian classifiers was also implemented for the purpose of fault isolation and localisation. The data mining techniques described in this paper are intended to allow a system to be trained to actually learn network fault rules. The results of the tests that were conducted allowed for the conclusion that the rules were highly effective to improve network troubleshooting.Comment: 19 pages, 7 figures, International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.3, May 201

    Clustering optimisation techniques in mobile networks

    Get PDF
    The use of mobile phones has exploded over the past years, abundantly through the introduction of smartphones and the rapidly expanding use of mobile data. This has resulted in a spiraling problem of ensuring quality of service for users of mobile networks. Hence, mobile carriers and service providers need to determine how to prioritise expansion decisions and optimise network faults to ensure customer satisfaction and optimal network performance. To assist in that decision-making process, this research employs data mining classification of different Key Performance Indicator datasets to develop a monitoring scheme for mobile networks as a means of identifying the causes of network malfunctions. Then, the data are clustered to observe the characteristics of the technical areas with the use of k-means clustering. The data output is further trained with decision tree classification algorithms. The end result was that this method of network optimisation allowed for significantly improved fault detection performanc

    Automated network optimisation using data mining as support for economic decision systems

    Get PDF
    The evolution from wired voice communications to wireless and cloud computing services has led to the rapid growth of wireless communication companies attempting to meet consumer needs. While these companies have generally been able to achieve quality of service (QoS) high enough to meet most consumer demands, the recent growth in data hungry services in addition to wireless voice communication, has placed significant stress on the infrastructure and begun to translate into increased QoS issues. As a result, wireless providers are finding difficulty to meet demand and dealing with an overwhelming volume of mobile data. Many telecommunication service providers have turned to data analytics techniques to discover hidden insights for fraud detection, customer churn detection and credit risk analysis. However, most are illequipped to prioritise expansion decisions and optimise network faults and costs to ensure customer satisfaction and optimal profitability. The contribution of this thesis in the decision-making process is significant as it initially proposes a network optimisation scheme using data mining algorithms to develop a monitoring framework capable of troubleshooting network faults while optimising costs based on financial evaluations. All the data mining experiments contribute to the development of a super–framework that has been tested using real-data to demonstrate that data mining techniques play a crucial role in the prediction of network optimisation actions. Finally, the insights extracted from the super-framework demonstrate that machine learning mechanisms can draw out promising solutions for network optimisation decisions, customer segmentation, customers churn prediction and also in revenue management. The outputs of the thesis seek to help wireless providers to determine the QoS factors that should be addressed for an efficient network optimisation plan and also presents the academic contribution of this research
    corecore